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Abstract 

A parallel  implementation of the finite  volume  method for three-dimensional, 

time-dependent,  thermal  convective flows  is  presented. The algebraic  equations  resulting  from 

the finite volume  discretization,  including  a  pressure  equation  which  consumes  most of the 

computation time, are  solved  by a parallel  multigrid  method. A flexible  parallel  code has 

been  implemented on the Intel  Paragon, the Cray T3D, and the IBM SP2 by  using  domain 

decomposition  techniques  and the MPI  communication  software.  The  code  can  use ID, 2D, or 

3D partitions as required by different  geometries, and is  easily ported to other  parallel  systems. 

Numerical  solutions for air (Prandtl number Pr = 0.733) with  various  Rayleigh  numbers up to 

lo' are discussed. 

*corresponding author 
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Nomenclature 

a ,  b, d coefficients of the finite-volume equations 

A area of a control-volume face 

A coefficient matrix of the finite-volume equation 

d width of cavity 

g acceleration due  to gravity 

h height of cavity 

1 length of cavity 

Nu Nusselt number 

p non-dimensional  pressure 

p* best  estimate of pressure 

p‘ pressure  correction 

R Rayleigh  number 

T non-dimensional temperature 

u, u ,  w non-dimensional velocity components 

u*, u* , w* velocity components  based  on p* 

u’, u’, w’ velocity corrections 

x ,  y, z non-dimensional  coordinates 

Greek  symbols 

LY under-relaxation  factor 
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/3 coefficient of thermal expansion 

K thermal diffusivity 

Y kinematic viscosity 

D Prandtl number 

1. INTRODUCTION 

Natural convection  driven by imposed  horizontal  density  gradients finds many  applications  in 

engineering:  reactor  cooling  systems, crystal  growth  procedures,  and  solar-energy collectors. The 

most  numerically studied form of this problem is the case of a  rectangular  cavity  with differentially 

heated sidewalls. The  two dimensional version of this  problem  has received  considerable  attention 

[l, 2, 3, 4, 5, 61, but for the  three dimensional  case,  very few results  have  been  obtained,  mainly 

due  to  the  limits in computing  power.  The significant computational resources of modern,  mas- 

sively parallel  supercomputers promise to make  such  studies feasible. In  order  to  determine such 

flow structures  and  heat  transfer, numerical  simulations  using the Navier-Stokes equations  and  the 

Energy  equation on parallel  systems  are discussed. 

In the early  simulation  methods  vorticity  and  stream  function were usually the  calculated vari- 

ables,  but the use of primitive variables has  attracted  many  computational  researchers for three 

dimensional  simulations. A number of numerical  algorithms  have  been  developed for incompressible 

fluid flows, such as MAC [7], the  Projection  Method [8], and  others [9]. The  SIMPLE  algorithm of 

Patankar  and  Spalding  [lo]  not only  provided  a  remarkably successful implicit method,  but  has dom- 
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inated for a  decade the field of numerical  simulations of incompressible flows [ll]. This  algorithm 

based on the finite volume formulation  lends itself to easy physical interpretation,  and  it ensures 

that if conservation is satisfied for each control volume, it is also satisfied for the entire  calculation 

domain. A clear and  detailed description of SIMPLE is given by Patankar [12]. 

Modelling large-scale three-dimensional  time  dependent fluid flows poses many challenges. Current 

numerical  methods  perform well on  fast, single-processor, vector  computers; however, the  expense of 

performing  such computation is extreme  in  terms of needed memory and processing time.  With  the 

rapid  development of parallel  computation, modelling large  scale three dimensional, time  dependent 

flows has become  relistic by using a large  number of processors.  Currently,  many  large  scale scientific 

simulations have been carried  out  on various parallel  systems  such as  the  Intel  Paragon,  the  Cray 

T3D,  and  the IBM SP2. 

In our  present  study, the  SIMPLE scheme is chosen as  the  algorithm for the  thermal convective 

flow problems  on  parallel  systems. It is not only because the scheme is used widely in  the convective 

heat  transfer community, but also  because it is easy to implement on a  parallel  system.  Since the 

derived  equations  are only dependent  on  its local control volume information,  domain  decomposition 

techniques  can be easily applied . Here we present  a  numerical study of thermal convection in a 

large  Rayleigh  number  range using parallel  systems.  Section 2 describes the  mathematical formu- 

lation of the  three dimensional,  time  dependent,  thermal  cavity flows. The numerical  approach for 

those flows  is given in Section 3. The detailed  parallel  implementation and  the code  performance 

are described  in  Section 4. The numerical  solutions for air  (Prandtl  number Pr=O.733) with  various 
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Rayleigh numbers up  to lo7 are discussed in Sections 5. The summary of the present work is given 

in Section 6. 

2. MATHEMATICAL FORMULATION 

The flow domain is a rectangular  cavity of 0 < x < 1,0 < y < d ,  and 0 < z < h. The  appropriate 

governing  equations,  subject to  the Boussinesq approximation,  can  be  written in non-dimensional 

form as 

d u  au dw 
-+ -+-"0 ,  
a x  dy d z  

~ ( ~ + u E + " - & + W a r  du du =-- 
0 ") dX ap + v u ,  

The dimensionless variables in these  equations  are the fluid velocities u, u,  w , the  temperature T ,  

and  the pressure p ,  where 0 = V / K  is the  Prandtl  number  and R = g,BATh3/r;v is the Rayleigh 

number. Here v is the kinematic viscosity, n is the  thermal diffusivity, /? is the coefficient of thermal 

expansion,  and g is the acceleration  due to  gravity. The rigid end walls on x=O, 1 are  maintained at 

constant  temperatures TO and TO + AT respectively, while the other  boundaries  are  assumed to  be 

insulating. So the  boundary conditions  on the rigid walls of the cavity are 

u = u = w = O  on x = O , l  , y = O , d  , z = O , h  

T=O on x=O , 
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T = l  on x = l  , 

dT 
d z  
" - 0  on z = O , h  , 

d T  
- = 0  on y = O , d  . 
dY 

In  general the motion is controlled by the  parameters c,R and  the flow domain. 

3. NUMERICAL  APPROACH 

An efficient and  practical numerical  approach for three  dimensional,  time-dependent,  thermal  con- 

vective flow problems is studied.  This  implementation is based  on the widely used  finite  volume 

method  (SIMPLE [12]) with  an efficient and  fast elliptic multigrid  scheme for predicting  incom- 

pressible fluid flows. A  normal  staggered grid configuration is used and  the conservation equations 

are  integrated over  a  macro  control  volume (Figure 1: i control  volume ) in  the  staggered  grid. 

Here, velocities are  stored  at  the six surfaces of the control  volume  marked by (ue, uW, un, us,  wt ,  wb), 

and  the  temperature  and  pressure  are  stored  at  the  center of the control volume (p i ,  Ti). Since the 

solution of the pressure  equation  derived  from the  SIMPLE scheme can  represent  as  much  as 80% 

of the  total cost for solving the fluid flow problem [ll], it is therefore a high  priority to solve for 

p in an efficient manner. Here,  a  multigrid  scheme is applied to  the discretized  equations,  which 

acts  as  a convergence  accelerator and reduces the cpu time significantly for the whole computation. 

Local, flow-oriented, upwind  interpolation  functions  have  been  used in the scheme to prevent the 

possibility of unrealistic oscillatory solutions at high  Rayleigh  numbers. 

A brief summary of the  SIMPLE  method is outlined  here,  and  details that  are  omitted  here  may 
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be  found in the original reference [12]. For a guessed pressure field p*,  the imperfect velocity field 

(u*, u*, w*)  based  on this pressure will result from the solution of the following discretization  equa- 

tions : 

where the  summation is over the  appropriate neighbor  points. A,, A n ,  A, are  the  areas of the faces of 

the i control volume at  e ,  n, t respectively. a,, an, at ,  aunb, aunt,, awnb, and b,,  b,,  bw are  the coefficients 

of the finite-volume  equations. The correct velocity fields are  computed by the velocity-correction 

formula: 

where 

A e  

ae 
de = -, 

dn = -, An 
an 

and  the  correct  pressure is computed by 

p = p* +cup'. 

a is an  under-relaation factor for the pressure.  In the present case a value of 0.5 is used. p' will 
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result  from the solution of the following discretization  equation: 

app:: - - apnbph + b p ,  (21) 

which is derived  from the  continuity  equation (1) and  the velocity-correction equations  (14),  (15), 

and  (16)  described  below. 

The  continuity  equation (1) for the  control volume in Fig. 1 is 

Introducing  equations  (14),  (15),  and  (16)  into (22) leads to  

which is simplied in (21) by notations. Here 

ap = a, + a,  + a, + a ,  + at + ab, 
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The  temperature will be solved  by the following discretization  equation: 

where up, U T ,  upnb, atnb, and bp, bT are  the coefficients of the pressure  and  temperature  equations 

resulting  from  the finite-volume method. 

Here five discretized  equations for u*, w * ,  w*,p' ,  T need to be  solved at each  time level. Typically, 

this  solution  step  dominates  the  costs  associated  with finite volume  implementation,  with the pres- 

sure  equation  having  the highest cost. Therefore,  the choice of solution  methodology is perhaps  one 

of the most  important  implementation issues addressed  here. 

Direct  solution  methods,  such  as  Gaussian  elimination or LU decomposition,  have  been  commonly 

used in solving  linear  algebraic equations,  and  there have  been several efforts toward  developing 

parallel  implementation of such solvers [13, 14, 151. However, there  are some  inherent  disadvantages 

of employing these  techniques for the parallel  solution of large  problems.  The  three  dimensional, 

time  dependent  thermal convective flow problems typically result in structured  matrices  character- 

ized by extremely  large  bandwidths.  The  direct  solution of such  matrices  requires a great  amount 

of memory for storage. Since five algebraic  equations will be solved, storing  the  associated  matrices 

becomes  extremely  expensive. 

Here iterative  solution techniques are chosen for the  above  algebraic  equations. Since  only local 

coefficients of finite-volume equations  are  required for an  iterative scheme, the  total memory is far 
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less than those of direct  methods. More importantly, using domain  decomposition  techniques, it- 

erative  methods  are  readily  implemented in a  parallel  system  with a message passing  library. But 

iterative  methods  may face converge problems. If the problem size is very large, the number of 

iterations needed to satisfactorily solve an equation could be significant, or  sometimes, the  iterative 

method  might  not converge a t  all. So choosing an efficient and fast converging iterative scheme is 

essential  in the present  study. 

Here a  multigrid scheme is applied in solving the above  equations. The main  idea is to use the 

solution  on a coarse  grid to revise the required  solution on a fine grid  since an error of wavelength X 

is most easily eliminated  on a mesh of size Ah, where X M Ah. Thus a  hierarchy of grids of different 

mesh sizes is used to solve the fine grid  problem. It has  been proven theoretically and practically 

that  the multigrid  method  has a better  rate of convergence than  do other  iterative  methods. Here 

we do  not give a full theoretical  analysis of the algorithm, which is described in detail elsewhere 

[16, 171. In  the present  computation, a V-Cycle scheme with  a flexible number of grid levels is 

implemented  with Successive Over-Relaxation as the smoother.  Injection  and  linear  interpolation 

are used as restriction  operators  and  interpolation  operators respectively. A detailed  description of 

a  parallel  multigrid  method is given in the next  section, and  implementations of sequential  multigrid 

methods  can  be found  in [18]. 

4. PARALLEL IMPLEMENTATION 

In  order to  achieve load  balance and  to exploit parallelism as much as possible, a general and 
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portable  parallel  structure  (Figure 2 )  based  on  domain  decomposition  techniques is designed for 

the  three dimensional flow domain. It  has l D ,  2D, and 3D partition  features which can  be chosen 

according to problem  geometry.  Those partition  features provide the best choice to achieve  load 

balance so the communication will be  minimized. For example, if the  geometry is a square cavity, 

the 3D partitioner  can be  used, while if the  geometry is a  shallow  cavity  with  a  large aspect  ratio, 

the 1D partitioner in x direction  can  be  applied.  Here, MPI is used for  communication which is 

required when subdomains  on each  processor  need  neighboring boundary  data  information. Because 

of the  portability of this software, the code  with MPI can  be  executed  on  any  parallel  system  which 

supports  the  MPI  library. Because of the complexity of the  implementation,  the  code is written in C 

so flexible data  structures  can  be used. The whole  parallel  computation is carried  out by executing 

the following  sequence  on  each  subdomain  with  a  communication  procedure added at each  iteration 

step for all flow fields: 

1. Choose a domain  decomposition structure by applying  a l D ,  2D, or 3D partition. 

2 .  Guess the flow  field at the initial  time  step  including  the velocity u, v ,  w ,  

the  temperature T ,  and  the  pressure field p .  

3. Advance the flow to  the next  time  step:  update  the coefficient b . 

4. Solve the  temperature  equation (34) using the  multigrid  method  and 

exchange data information  on  partition  boundaries. 

5. Evaluate  the coefficients of the  momentum  equations  and solve the 

velocity equations (11),  (12), and (13) by the multigrid  method  and 

exchange data information  on  partition  boundaries. 

6. Solve the pressure  equation (21) by the  multigrid  method  and 

11 



exchange data information on partition boundaries. 

7. Correct  the velocity and  the pressure fields by using (14),  (15),  (16), 

and  (20). 

8. Cycle 4 to 7 until convergence is achieved. 

9. Go to  next  time level and exchange data information on  boundaries. 

10. Cycle 3 to  9 until convergence for a  steady  solution is achieved. 

The parallel  multigrid solver for the pressure  equation is summarized as the following: For the 

pressure  equation u,p: = u, ,bp~,  + b,, the discrete form is rewritten as APh = bh at mesh level h. 

Here p',  b, are represented by P, b , and A is the local coefficient matrix of the finite volume pressure 

equation.  And  the parallel V-Cycle scheme Ph t MPh(Ph,  bh)  for N grid levels is outlined  as: 

1. DO k = 1 , N -  1 

Relax n1 times  on AhPh = bh with  a given initial guess P,h , and  after 

each  relaxation  iteration, exchange edge values with  neighbors. 

bZh t Iih(bh - AhPh),  p Z h  t 0 

Enddo 

2. k = N (the coarsest grid), solve AhPh = bh 

3. D o k = N - l , l  

Correct ph  t ph  + l,h,pZh. 

Relax 7x2 times  on AhPh = bh with  initial guess PO", and  after each 

relaxation  iteration, exchange  edge values with  neighbors. 

Enddo 

Here I ih  and  are  restriction  operators  and  interpolation  operators respectively, and in the present 
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study,  injection  and  linear  interpolation  are used. A similar multigrid  scheme is used for the velocity 

and  temperature  equations. 

The  algorithm telescopes down to  the coarsest grid, which can  be a single interior  grid,  and  then 

works its way back to  the finest grid.  Currently, the parallel  V-cycle  scheme  with  a flexible number 

of grid level is implemented, which can  be  adjusted  according  to  the grid size used. The Successive 

Over-Relaxation was chosen as  the  smoother,  and  two  times  iterations were performed at each  grid 

level. 

For low Rayleigh numbers,  the  initial conditions throughout  the flow domain  can  be  set to T = x11 

and u = v = w = p = 0. For a higher  Rayleigh  numbers, the initial  conditions  can  be  generated 

from  a stead flow at  a lower Rayleigh  number. The  application is implemented  on the  Intel  Paragon, 

the  Cray  T3D,  and  the IBM SP2,  but  it  can  be easily ported  to  other  distributed  memory  systems 

with the  MPI library. 

The  speedup  measurements of the parallel code  are performed  on the  Intel  Paragon,  and  the  IBM 

SP2. A moderate  grid size 64 x 64 x 64 with  a test model of R = lo5, r = 0.733 in a square box 

for fixed time  steps is used as  our  test problem.  Figure 3 shows the speed  up from 1 processor to  

128  processors  on the  Paragon (+) and  the  SP2 (*). The line is nearly  linear on the  Paragon,  but 

on the  SP2  the curve  bends slightly when the  number of processors  reaches 64. This is because the 

computation  speed of the  SP2 is about five time  faster  than  that of the  Paragon for the present 

problem,  but  the  communication speed  on the  SP2 is not. So for the  same  grid size, the  ratio of 
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computation  to communication  changes more rapidly  on the  SP2. 

5. RESULTS AND DISCUSSION 

Various numerical tests  have been carried out on the  3D code. The  results show that  the nu- 

merical scheme is robust  and efficient, and  the general  parallel structure allows us to use different 

partitions  to  suit various  physical  domains. Here numerical  results for the velocity and  temperature 

fields with R = 14660, lo5, lo6, lo7, (T = 0.733 in 0 5 5 ,  y, z 5 1 are  presented.  The grid sizes 

64 x 64 x 64 and  128 x 128 x 128 with 2D and 3D partitions  are used for the  computation.  The com- 

putation is stopped when the following conditions are satisfied,  corresponding to  the achievement of 

a steady-state solution: 

where k is the  time level index and €1 and €2 are usually  taken to be lop6. 

The velocities on  the whole flow domain  are displayed in Figure 4, which give complete  pictures 

of the three-dimensional flow with  various Rayleigh numbers.  In  Figure 5 (a),  the velocities and  the 

temperatures for R = 14660 are  illustrated  on y = 0.5. The flow patterns  on  the 2 - z plane are 

similar to  the two  dimensional  problems [4, 51 with low Rayleigh numbers. It is easy to see that 

the flow rises  from the hot  side,  travels horizontally, and  sinks  on the cold side. For R = lo5 in 
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Figure 5 (b),  the velocity field has a slightly tilt,  and  it  no longer remains  a single main  circula- 

tion.  Two rolls are formed  in the x - z plane velocity field, and  the  thermal  boundary layers are 

observed  on the two sidewalls. When R = lo6 in Figure 5 (c),  the centers of the rolls move further 

toward the two sidewalls, and  the  thermal  boundary layers are  getting  thiner.  In  the middle of the 

flow domain, besides the two rolls near the sidewalls, a weak roll in the center is visible. Once the 

Rayleigh  number  reaches R = lo7 in  Figure 5 (d),  the centers of the  two rolls move to  the lower 

left corner and  the  upper  right corner respectively. A stronger roll dominates  the middle  region. 

The core temperature field remains  nearly  linear, but  the  structures  near  the sidewalls become more 

complicated.  Compared  with R = lo6, much stronger  temperature  gradients cover nearly the whole 

sidewall, and vary  more  rapidly  near the lower left and  the  upper  right  corners.  On  the x - z plane, 

the flow fields have  similar flow patterns  as  those of the two  dimensional  cases, but  the 3D solutions 

give complete  pictures of the flows which are more  realistic and  interesting. 

The  heat  transfer  along  the cold wall and  the center ( x  = 0.5) plane is characterized  by  the lo- 

cal Nusselt numbers, 

and  the overall Nusselt number  on  the y-z plane is computed by 

The local minimum, the local maximum , and  the overall Nusselt number Nu on the cold wall are 

shown in  Table 1, and  indicate how the  outward  heat  transfer is significantly  enhanced as R in- 
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creases.  For Rayleigh number lo7, Figure 6 shows the local Nusselt numbers  on the cold wall and 

on the middle  plane ( x  = 0.5), which gives quite different local heat  transfer  properties. On  the cold 

wall, the local Nusselt numbers  increase  sharply when z + 1.0 because of the  thin  thermal  boundary 

layers  set up near the walls, and  the local Nusselt numbers  vary  little in y  direction  except  near 

the  south wall (y = 0.0) and  the  north wall (y = 1.0). On  the midplane, the local Nusselt numbers 

change significantly in z direction,  and have some  negative values near the lower half zone ( z  < 0.5). 

The  range of the local minimum and maximum Nusselt number is much larger than  that on the cold 

wall. As the  total Nusselt number Nu can  be commonly used as  an  indicator of the approach to a 

steady  state,  the overall Nusselt number  should  remain the same if a steady  state is achieved . So 

the Nusselt number Nu, on  the cold wall and  the Nusselt number Nu, on the midplane  can  be used 

to  provide  a check on  the accuracy of the numerical  solution.  Table 2 lists the Nusselt numbers  in 

each  case  with different Rayleigh number to  test  the accuracy of the numerical  results. This result 

indicates very good consistency. 

6. CONCLUSIONS 

We have successfully implemented the finite volume method  with an efficient and  fast  multigrid 

scheme to solve for three-dimensional,  time-dependent, incompressible fluid flows on  distributed 

memory  systems. The parallel  code is numerically robust,  computationally efficient, and  portable to 

parallel  architectures which support MPI for communications. The present  parallel  code has a very 

flexible partition  structure which can  be used for any  rectangular  geometry by applying  a lD ,  2D, or 

3D partitioning to achieve load  balance.  This  feature allows us to  study various thermal cavity flows 
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with different geometries. In  addition to  the  Prandtl number and  the Rayleigh number, the geometry 

is the  other  major  factor  determining  the flow structure [ 5 ] .  The code shows very good  speedup which 

allows us to simulate  large scale problems using a  larger  number of processors. We have  carried  out 

some high  Rayleigh  number flow simulations which demonstrate  the capabilities of this parallel  code. 

The new three dimensional  numerical  results are  obtained for various  Rayleigh  numbers  ranging 

from 14,660 to  lo7. They give a complete  description of the  three dimensional flow, with the flow 

field gradually  changing to a  multiple roll structure from a single flow circulation as  the Rayleigh 

number  increases. Very thin flow boundary  layers  are  formed  on the two sidewalls. The overall 

Nusselt numbers  on the cold wall with various Rayleigh numbers  are also  calculated which show the 

strong dependence of Rayleigh numbers.  In  spite of the difficulties associated  with  large  Rayleigh 

number  simulation,  our  results  illustrated here clearly demonstrate  the  great  potential for applying 

this  approach to solving much higher Rayleigh number flow in realistic,  three-dimensional geome- 

tries  using  parallel  systems  with  large  gird sizes. Much higher Rayleigh numbers  computations  and 

transient  features of thermal convection in 3D are  under investigation. 
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R a  Numa, Numin Nu 

lo5 9.148  0.667  4.615 0.733 

lo6 25.035  0.849 10.575  0.733 

lo7 62.264  0.901 21.175 0.733 

Table 1: The overall Nusselt  number Nu, the local minimum  Nusselt  number and  the local maximum 

Nusselt  number at the cold wall. 
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R Discrepancy Nu, Nu, 

~ 11: 1 4.615 1 4.667 

10.575 10.414 

lo7 21.175  21.149 

-0.052 

0.161 

0.026 

Table 2: The overall  Nusselt  number on the cold wall and  the  middle  plane ( x  = 0.5). 
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List of Figures 

1.  The staggered  grid  configurations. Velocities are  stored  at  the six surfaces of the  control volume 

marked by (u,,  uw, u,, us,  wt,  wb), and  the  temperature  and  pressure  are  stored at the center 

of the control  volume (p i ,  Ti). 

2. lD,  2D, and  3D  partitions  on a flow domain for parallel  systems  which  can  be  applied  according 

to different geometries. 

3.  Speed  up of the parallel 3D code  on the IBM SP2 (*) and  Intel  Paragon (+). 

4. Velocity  on the whole  domain for Rayleigh  numbers  14460 (a),  lo5  (b),  lo6  (c),  lo7 (d). 

5. Velocity (left),  temperature  (right)  on y = 0.5 for Rayleigh  numbers  14460 (a), lo5 (b), lo6 

(c),  lo7 ( 4 .  

6. The local Nusselt  numbers  on the cold  wall (a),  and on the middle y - z plane (b). 
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